The intensification of the sublimational dehydration process by the use of sorbents can be evaluated quan-
titatively from the variation in time in the moisture content of the material —drying curves in Fig. 4.

The time taken to dry a moist brick to a given moisture content (2%) is 220 min (modification ). When
the sorbent is placed on the surface to be sublimated (modification II) the duration of the dehydration is cut by
18% (7=180 min). The dehydration time is affected significantly by the organization of the layer structure:
modification III 7=130 min and modification IV 90 min, i.e., the duration of drying is reduced by 40% and 60%,
respectively.

Thus, the duration of dehydration in a vacuum is shortened considerably by the use of sorbents in direct
contact with the material and by the correct organization of the sorbent—material layer structure.

This kind of eontact mass exchange takes on especial significance for the low-temperature drying of
highly thermolabile materials. In particular, for a number of products of biological origin a 10-15° increase
in temperature causes the sudden inactivation of ferments and denaturation of cellular albumin. In this case
the cost of sorbents and their requirement for periodical regeneration is of secondary importance compared
with the quality of the material being dried.

NOTATION

G1, AG, initial amount of moisture and loss of moisture in specimen; 7, ATphage, time and phase time;
Up,, Ug, mean moisture contents of material and sorbent; 7, h, length and th1ckness of layer, respectively.
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ANALYTIC INVESTIGATION OF HEAT AND MASS
TRANSFER UNDER VARIED DRYING CONDITIONS

N. N. Kuznetsova UDC 66.047.35

Formulas are obtained for heat and mass flows at the boundary of the semispace during the
second drying period with the temperature and mass-transfer potential remaining constant at
that boundary.

In a number of engineering processes the basis is provided by heat and mass transfer (drying, condi-
tioning, rectification, ete.). In the present article an analytic investigation is carried out of heat and mass
transfer during the process of drying under varied conditions.
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Let us consider a system of differential equations for heat and mass transfer [1]:

a0, %0, 0 0 %9, 0%
—=a b 2 2 _. 2 . 1
o Tam ThTy, o "B e Th e W
(a, +bb, + a,)* = 4a,a,
in the domain Dy (0 <x <, {>0) under the following boundary conditions:
0,(x, 0) =8, O<r<oo; i=l, 2, (2
00, (0, #) 08, (0, & 89, (0, )
Y PLL L 2 20 21 =
1 ox g, @, A T ox - Ay ox 7. (>0), 3
a0 ) B .
B2 ) o, =0 (=1, 2, (@

where ¢; is the temperature; §, is the mass-transfer potential; q; is the heat flow; q, is the mass flow; x is the
space coordinate; t is time; ay, a4, by, by, A4, Ay, 8 are well-known constant values [1].

During the time t; the drying takes place with a constant heat flow gy and a constant mass flow gy which
results in the temperature and the mass-transfer potential reaching the values 8y and 8,;, respectively (the
first drying period). Rules will be established for modifying the heat and mass flows so that the temperature
611 and the mass-transfer potential §,) are maintained on the surface (the second drying period).

During the first period one has

g1} = qroy G2 (1) = Gq (5)

in the boundary conditions (3). We shall determine the functions §;(x, t) and §,(x, t) that satisfy the system of
equations (1), the initial conditions (2), and the boundary conditions (3), (4), and (5). The solution is found by
simultaneous application of Fourier and Laplace integral transformations. As regards the variable x, the
Fourier cosine transform is used:

FO (x, t)=—i—— § 8, f) cos widt. (6)
]

When the image F 6 (x, t) is known the function g(x, 1) is found by using the formula

0(x, )= f [FO (x, £)] cos wxdw. (n

0

For the transform of the second derivative one has

0% (x, 1) — PO (x, f)— 2 a8 (0, 1) )
ox? ’ T ax

As regards the variable t one uses the Laplace transform

F (8)

o

L9 (x, ) = S' exp (— pt) 0. (x, ¥ df, (9)

0

= pLo (x, )— 0 (x, O). (10)

L ae‘(x_, 1)
d

t

By applying the integral transforms (6) and (9) successively together with the formulas (8) and (10}, the
initial conditions (2) and the boundary conditions (3) and (5), the original problem is reduced to an algebraic
system; one then finds with the aid of the inverse Laplace transform

2
Fo;(x, t) = E (AijFUijr

kj=1

BY; kaj) i =1, 2, (11)

where

f
Fup; = exp (— o0%) FB;, Fuwy; = f exp (— 00°1) g;0dT,
0
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[a; 4 byb, + a, -+ (‘—l)k+1 Via, + bib, + a,)* — daa, |
(=1, 2).

The constant coefficients Aliq-, Blicj (i, k, =1, 2) are given 'by the formulas

Al = (@ —ay) 2, Ap1 = (@, — ;) 2, Aly = — A}y = aybyz,

h= —a)z, Bl=— Z b, Bii=—1— (G—ap 2,
1
Bé? =2 byuz,
Ag
Al =—A5 =—bg, Ali=(ty—a,—bb)z, AL =(bb+a,—a)z,
Bh = —B}i = Bl = —a)z Bk = @m—a)s,
1
2 ==
&y — &,
The application of the inversion formula (7) to the expression (11) results in
8,(x =3 (Ao, +Bhm,) (=1, 92, (12)
Ej=1
where
1 .
Upy = - j‘ It —8 ot} +%(x + &, opf)] 05dE = 0y, (13)
i

r o T 2Var e x
= o t — AT = q'“) L _ ] — —_————
0ny bfxtx ot =) g = [ DA e ) et = ] , (14)
1 x2

It follows from the formula (12) that on the boundary (for x =0) the temperature and the mass-transfer poten-
tial are given by

8,0, z)=e,o+; 2Bé;~;’+°_‘f‘- (=1, 2. (16)
- ahn

From (16) one can find the time during which the heating should be maintained so that on the surface the tem-
perature 64y is obtained:

(911 — B

f= - 7
(E Bl 410 )
R, j=1
and also the time required fo establish the mass-transfer potential ¢,; on the surface:
_ 2
f, = 2(921 B,0)* (18)
2 .
4 ( E B/‘fi qjo__ )
Py Vah
The equality t;=t, yields
a % —dy Ay — % ]/“—z - V°T1
—L_ | A8, + —Agp, 2
A [ ( Va, Ve ) V o,
920 = G0 al a la az 2 ]/_12 (19)
2| A® 1L 2 —A8h, Vo, —Va
}vz [ 1 ( -l/'al + ]/az ) 2¥1 ( 2 1)]
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where A g; =064 (i=1, 2).

Let us now consider the system (1) in the domain Dy {0 <x < %, t>t;) under the boundary conditions (20),
(21), and (4) (the second drying period):

2 —_—
. . B 2
0, (%, 1) = 0y - 2: Bl dno_ l_g_@t_. exp (_u x )_
ak "

- ]/E 4Oth1
X
—xerfc ————- | =%, (x) O<<x s i=1, 2),
e | = O<x<oo ) (20)
O e 62V
00, =0+ Y By T —0, (>0 (21)

&, [=1

One now determines the functions ¢;(x, 1) and 9,4(x, t) which satisfy Eqs. (1), the initial conditions (20), and the
boundary conditions (21) and {4).

As regards the variable x, the Fourier sine transform is applied:
Fo(x, f)= 2 5 0 (&, 1) sin widk. (22)
: K1
0

The function 6(x, t), if its image Fo(x, t) is known, can be determined with the aid of the formula

0(x, )= f [FO (x, 1)] sinoxdo. (23)
0
One has for the transform of the second derivative
0%0

20
F —— = —?F0 - ——— 06(0, 9.
Fy ©*FB + - ©, 9 (24)

As regards the variable t, the Laplace transform (9) and (10) is used.

By a successive application of the transform (22) and (9) together with (23), (10), (20), (21), and (4), the
original problem is reduced to an algebraic systern whose solution as a result of using the inverse Laplace
transform is given by

2
FO,(x, t) = 2 (Ci;FPki-e— Di;,.-Fth) i=1,92, (25)
k.f=1

where

t
FPy; = exp (— ap0™) Fig; (), FQuy = j‘ exp (— o,0?T) 8,,dt.
0

The constant coefficients Cﬁj, Dﬁj (i, k, j=1, 2) are given by the formulas
C%] :—'(ql‘—ag) Z, Cél :(az_'a'z) Z, C}Q = —"Céﬁ =_—b1a2zi
D!\ =la, (bb, — a) — a2, Diz = —baaz, D = [aa,—

— &y (byby T @)l 2, Dj; = ba,m,2,

. 2 : 2 :
Cii=—Cii=bgz, Cla=(y—a,—bb)z, Ci=(a+bb—a)z
2 2 2 2
Di, = bpz, D3 = —boz, Diz=a,(,—a)z, Di=a(e—a)sz
. 1
2 =
oy — Oty

Applying the inversion formula (23) to the expression (25), one obtains

0:(r, = 3 (ChiPiy+DhQu) (=1, 2, (26)

&,f=1
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where

Pa= —— j (e —& o) + 106+ & o)l 5 @) &, (27)
0
X [ x2 t
thz _2 Vn__.ag ta eXp (— 4akt ) * ejp (28)
where the symbol ,} denotes the convolution:
i
Fo gty = [ Ft—v g@ de. (29)
’ 0

One now proceeds to determine the unknown functions q,(t) and q,(t) from the boundary conditions (3).

By differentiating (23) with respect to x one finds

LI E(C;L-R DL Sy (=1, 9 (30)
_6x ix=0 o i N\&j ki Orj 1 ’
where
1 [ 8 , (31
Ryj= 5 S e [x(x —E au) + 5 (x 4+ & aph)] by (E) dEl_p 31)
L]
1 a X2 t
S.= . — 0 .
M o VaagP | ox [”ex"( dat ) * ”].x=o (32)
The relation (31) is transformed by integrating by parts. Taking into account that
_ Y
D [ 2y [,
0x » dot i3 4at
2 2
dJ exp | — E+x _ 0 exp | — &+ %) '
dx 4ot 0t 4ot .
one obtains from the formula (20)
0 i
‘Pz ® _ L Bi; ‘7}0 eric ( Vel ) s ¥ (0) =0,y

&,j=1

and then

arclg l/ -ﬁ___] . (33)
i

By transforming (32) one finds

(34)

Fmally, using (3), (30), (33), and (34), and bearing in mind the expressions for the constant coefficients ij,

Dky nm’ one obtains
g () =vh, - A% g [1— 2 aretg 1/ ], (35)
V Oy ki1 t

where

v= [ttt Va—Va) tae (L8 - Vo) s oyaava] (w—e Ve,

oy o,
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in particular, for by=by=0 (a3 =ay, @, =a,, v=0) it follows from (35) that

7: ) = Gio [l— 2 arclg l/%] =1, 2. (36)

1
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A ol S o

TEMPERATURE MEASUREMENT USING THERMISTOR
WITH PULSED OPERATION OF CIRCUIT CONTAINING
THERMISTOR AND LINEAR RESISTOR

S. B. Minkin, A. G. Shashkov, UDC 536.63:621.316.825:621.3.011.1
and V. E. Ulashechik

A method is considered for determining the basic parameters characterizing a pulsed therm-
istor—linear resistor temperature-measuring circuit and ensuring increased sensitivity to
temperature changes while conserving a given aceuracy of measurement.

The main demands imposed on the design of temperature-measuring apparatuses reduce to sensitivity
and accuracy. In the event that a semiconductor thermistor is used as the temperature sensor, it turns out
that these demands are contradictory, since a high sensitivity of the apparatus requires a significant current
flow in the sensor circuit; this current heats up the thermistor and so gives rise to a systematic measure-
ment error. This error is usually reduced at the expense of the sensitivity, by reducing the current, which
for microthermistors varies from one to a few tens of microamps.

The dilemma can be obviated to a large degree by pulse operation of the thermistor-containing mea-
suring circuit. If the supply of the RT—R circuit (i.e., the thermistor—linear resistor circuit) is pulsed in
such a manner that the mean power supplied equals the power supplied at de, then the amplitude of the pulses
of supply current or voltage may be increased over the dec value by a factor of 1/ Vo (where y is the duty fac-
tor, the ratio of pulse duration to the pulse repetition period). The heating of the thermistor that occurs in
this case too by the current passing through it can be estimated from the curve of the transient process.

The theory of pulse systems is well developed and is presented in detail in Tsypkin's books [1, 2], for
example.

Transient processes in thermistor circuits for pulse-type variations of the input quantities are con-
gidered in [3-6].

Nonetheless, the practical realization of the pulse method of temperature measurement using semicon-
ductor thermistors has been frustrated until recently due to the absence of a simple and reliable high-speed
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